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Effect of weak uniaxial loads on creep strain rate 
in high-porosity MgO compacts during early 
sintering stages 

D. BERUTO*, M. CAPURRO*, R. NOVAKOVIC, R. BOTTER* 
Inter-department Center of Materials Engineering (CIIM), and *lnstituto di Ingegneria 
e Scienza dei Materiali, Faculty of Engineering, University of Genoa, Genoa, Italy 

Creep phenomena accompanying the early stage of sintering of high-porosity MgO powder 
compacts were investigated with regard to the dependence of creep rate on the applied 
stress. This dependence was found to be non-linear, obeying a power law with an exponent 
n < 1, in contrast with the behaviour of dense compacts which exhibit linear 
Nabarro-Herring creep under the same type of loading. The nature of the creep 
exponent, expected to be in relation to mechanisms of particle disconnection and 
rearrangement, frequently observed in a high-porosity compact during the early stage of 
neck formation, has been explored using an appropriate physico-mathematical model. The 
relevant point concerning high-porosity compacts is that, owing to the loosely packed 
microstructure, the necks must resist not only normal forces, but also bending moments. 
It is the action of such bending moments which is supposed to drive the particles 
rearrangement. In this framework, the nature of the creep exponent appears to be 
related mainly to the green density, but it is substantially constant with densification. 
The predictions of the model explain the experimental results for n < 1 (high-porosity 
green compacts), with a smooth transition to the case of n = 1 (low-porosity green 
compacts). 

1. Introduct ion 
Dilatometric experiments show that high-porosity 
compacts fired under weak uniaxial forces, undergo 
densification and creep. Rahaman and co-workers 
[1-7]  have proved for a number of ceramics compacts 
that the densification rate is practically unaffected by 
the action of weak uniaxial loads. In this way the creep 
time history can be derived from separate measure- 
ments of total axial shrinkage on loaded and unloaded 
samples [8]. Creep tests under different loads can be 
carried out to investigate the dependence of the creep 
rate on the applied compressive stress, Go, and on 
temperature. 

In a recent research on low-density MgO compacts 
[9], the dependence of the densification and creep 
rates (respectively ~d and ~c) on temperature and 
microstructure, was investigated. For  compacts of this 
kind the microstructure was shown to be entirely 
described in terms of the actual density. Thus, fixing 
density, the true temperature dependence of both den- 
sification and creep rate, could be enucleated and was 
shown to be the same. On the other hand, the two 
rates were found to be differently influenced by micro- 
structure, in particular the creep rate appeared to 
decrease faster than the densification rate, as the rela- 
tive density increased. This feature is peculiar to low- 
density compacts, because results obtained by other 
authors [1 - 7] on dense compacts indicate that the 
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ratio of the two rates is approximately constant with 
density. 

To explore the dependence of creep phenomena on 
microstructure in the case of low-density green bodies 
is not an easy task, because a number of matter trans- 
port phenomena, as well as mechanisms of particle 
rearrangement, are expected to be active in the early 
stages of isothermal sintering. Because these mecha- 
nisms are ordinarily cooperative, it is difficult to single 
out a dominant one in the creep behaviour. However, 
a contribution to such a complex field can be given by 
investigating the effect of the applied compressive 
stress on the creep rate. 

The dependence of the creep rate on the applied 
stress is normally expressed by a law of the type 

~ = f (G,  P, T )  ~'~ (1) 

wheref(G,  p, T)  is a complicated function dependent 
on powder geometry (generically indicated by symbol 
G), microstructure (expressed by actual relative den- 
sity, p, for the reason given above) and temperature, T, 
and the exponent n is related to the nature of the creep 
mechanism. Accordingly, if one compares creep re- 
sults obtained under different applied stresses on sam- 
ples with equal actual density, temperature and 
geometry, it is possible to determine the creep expo- 
nent in Equation 1. If the phenomenon is substantially 
amenable to a Nabar ro-Herr ing  creep, n should be 
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equal to 1, while n > 1 would indicate a behaviour in 
the plastic range [10]. 

Highly porous compacts, during the early stage of 
sintering, may undergo, due to inherent instabilities in 
the solid-pore phase, particle disconnections and re- 
arrangement [11, 12]. These phenomena are related to 
the anisotropy of the neck growth as well as to the 
non-uniformity of the stress distribution acting on the 
neck cross-section of a loosely packed compact. As 
far as we are aware, the way how these phenomena 
can influence the value of the creep exponent, n, has 
never been reported, making the subject of the present 
investigation. 

2. Experimental procedure 
2 .1 .  Materials 
The magnesium ceramic oxide powders used to obtain 
porous compact samples, were prepared by decompo- 
sition of Mg(OH)2 powders in air at 1173 K. Surface 
area values of the oxide powder were about 11 m 2 g-  1. 
Impurities were all below 2.5 p.p.m. SEM observa- 
tions gave a mean grain size of 0.17 ~tm, from which 
a surface area of 10.9 m 2 g-  1 can be derived. Accord- 
ingly, the oxide powders produced by the decomposi- 
tion reaction are not porous. 

The porous compacts were produced in form of 
cylinders 8 mm diameter and 8 mm long from a slurry 
with ethyl alcohol, using a press-filtering method al- 
ready described elsewhere El3]. 

The green density of pressed compacts was obtained 
both from direct measurements of mass and volume 
and also by the porosimetric technique. The experi- 
mental error of such measurements was within 0.5%; 
the mean relative green density for all samples was 
found to be 0.28 + 0.005. 

2.2. S p e c i m e n  t r e a t m e n t  
The samples were placed in a loading dilatometer, 
already described elsewhere [14]. The furnace was 
preheated at a heating rate of 20 Kmin-1 ,  in such 
a way as to obtain a central region 20 mm long where 
temperature was equal to 1298 _4- 0.5 K. Dry nitrogen 
was flowing in the dilatometer at a rate of 
200 mn min-  1. The external load was transmitted to 
the sample by an alumina pushing rod driven by a gas 
actuator and was applied from the beginning of the 
firing run. The calibration error of the loading device, 
including thermal effects on the actuator, was esti- 
mated in 4- 10% of the actual applied load. The 
nominal applied stress, o0, is calculated by dividing 
the force by the initial cross-sectional area of the 
sample. 

Initially the samples were kept for 2 h in a region of 
the furnace where the temperature was about 673 K. 
This treatment was devised to eliminate the influence 
of the water vapour eventually contained in the 
sample on the sintering process [15]. The sample was 
then pushed into the hot zone at a pre-set temper- 
ature. A thermocouple, placed about 1 mm over the 
sample, permits evaluation of the duration of the non- 
isothermal period once the sample and the pushing 

rod are introduced in the hot isothermal region. This 
transitory period was found to be about 10 rain. How- 
ever, because the thermocouple is not directly at- 
tached to the sample, a delay must be expected [14] 
before the sample reaches the isothermal regime. The 
sintering temperature was selected in order both to 
obtain measurable changes of density in reasonably 
short firing times and to minimize the fraction of 
linear shrinkage occurring in the non-isothermal re- 
gime. The non-isothermal period was less than 20 min, 
for a total run of 120 min. 

Fresh samples of equal size, composition and den- 
sity were used for each applied load. The explored 
range of applied stress was 6.9-90 kPa. In order to 
have an applied effective stress as constant as possible 
during the densification process, the dimensional 
change of cross-sectional area of the samples was kept 
as low as possible. Tests were designed for a total 
amount of densification not higher than 20%-25%,  
so that the change in true stress due to change in 
cross-sectional area was within the experimental error 
( _4- 10%) for the duration of the test. 

The apparent density of the compact was deter- 
mined for each applied stress before and after firing 
from direct measurement of sample geometry and 
mass. 

The densification strain, ad, which should be inde- 
pendent of the applied stress, has been determined by 
measuring the relative density of equal fresh samples 
in a number of interrupted runs without external load. 
Agreement between the final value of relative density 
(0.353 at 120 min) measured in such a condition and 
that obtained in the presence of applied stresses, was 
reported to within a scatter of 6 % - 8 % .  

3. Results  
Isotropic linear shrinkage ~d ( ~ Ap/3po in the case of 
small deformations) and total axial shrinkage 

= A L / L o  are plotted against time in Fig. 1 for different 
applied loads. Density measurements were made with 
and without the dilatometer rod in place. The experi- 
mental error in green density amounts to _+ 0.5% of 
the 0.284 average value for all the samples used in 
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Figure 1 Total strain histories at different applied stresses and 
densification history. Experimental points (circled in the plot) derive 
from direct measurements of density. 
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the different runs, while the densities of the sintered 
samples were measured with an error of 4% 5% of 
the values in Fig. 1. Accordingly we can assume that 
also in the early stage of sintering, weak uniaxial loads 
have little or no influence on the densification process. 
This is also true of MgO compacts of the same green 
density sintered for longer times [-9] and compares 
with the results of Rahaman and co-workers [1-7] on 
denser compacts. 

The creep strain is calculated from total axial 
shrinkage and isotropic linear shrinkage as [,16] 

% = ~ - ~a (2) 

Processing the data of Fig. 1 by means of Equation 
2, creep curves plotting creep-strain against time are 
obtained and are given in Fig. 2. For  all the applied 
loads, these curves exhibit an S-shape in the explored 
time range. Such curves obey a phenomenological 
equation of the type 

C 
~o = (3) 

a + exp( -- b/t) 

a, b and c being phenomenological constants cal- 
culated for each applied load. 

The creep strain rate, ~c, is given by the time deriva- 
tive of Equation 3 and the corresponding curves are 
shown in Fig. 3. The isothermal segment of the test, as 
remarked in the experimental section, is expected to 
start about 20 min from the beginning of the run. The 

Figure 4 Microstructures of(a) high-porosity and (b) low-porosity 
compacts from SEM observations. Effects of grain-boundary dis- 
connection and tilting circled in (a). 
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Figure 2 Creep-strain histories at different applied stresses. 
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Figure 3 Creep strain rate versus time at different applied stresses: 
(I) 6.5 kPa, (II) 19.5 kPa, (III) 45 kPa, (IV) 90 kPa. 

isothermal regime is characterized by an observed 
creep rate rapidly decaying to zero independently of 
the applied load. As in the same lapse the sample 
density does not stop increasing with time, it is reason- 
able to assume that the examined creep is hindered by 
stable grain-boundary formation. If so, the dominant 
creep mechanism should be attributed to instability of 
particle-to-particle contacts. Actually, as shown by 
scanning electron micrography (Fig. 4a), our highly 
porous MgO samples, during the early stage of sinter- 
ing ( ~ 45 min), seem to undergo grain-boundary dis- 
connections (circled in Fig. 4a). This process is prob- 
ably due to the inherent instability of the solid/pores 
system [-11, 12], which is certainly enhanced when the 
porosity is very high. 

The dependence of creep strain rate on the applied 
stress is derived from the data of Fig. 3, by plotting 
logarithmically ~c against Cyo at fixed sintering times. 
The results are shown in Fig. 5 and yield, to within the 
experimental error, a family of nearly parallel straight 
lines. The average slope, n, of such lines is 0.44 • 0.03. 
Deviation from these values (n = 0.64 at 20 rain) is 
observed only for shorter sintering times, probably in 
the transition to the isothermal regime. 

The evidence that the logarithm of +o plots linearly 
against the logarithm of the applied stress proves that 
Equation 1 correctly applies to the present data. Fur- 
thermore, the fact that the angular coefficient n is less 
than 1 and practically time-independent is a quite new 
and unexpected result. First of all the investigated 
phenomenon is neither amenable to a Nabar ro -  
Herring creep, for which n = 1 should be expected 
[,17], nor to a superplastic or plastic-type creep for 
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Figure 5 Creep strain rate versus applied stress plotted logarithmi- 
cally at different firing times. Slopes represent creep exponent n. 

which n is equal to or greater than 2 [18]. Secondly, 
the substantial constancy of the creep exponent with 
time suggests its weak dependence on the actual den- 
sity in the explored range (0.28 0.37). Considering 
that both the mean grain size and the average pore 
size are uniquely determined by the sample density 
[9], it should be inferred that the creep exponent is 
also independent of such variables. Nevertheless a de- 
pendence of n on microstructural shape parameters, 
weakly related to actual density, average pore and 
grain size, cannot be excluded. If so, the nature of 
n < 1 creep should be due to mechanisms of particle 
rearrangement and packing changes. Such effects are 
little related to bulk properties and should be parti- 
cularly active during the early stage of sintering of 
highly porous compacts. 

4. Physico-mathematical model 
A porous compact formed by non-porous particles 
develops complex states of internal stresses with the 
progress of a sintering process. This effect is due, 
partly to the so-called sintering stress which acts lo- 
cally at the joints between individual particles, as 
discussed elsewhere [19], and partly to the external 
load. These stresses tend to concentrate on the neck 
cross-sections and can be evaluated, at a given instant 
of the process, by a simplified model, reducing the 
compact to a topological network where the knots 
represent the particle centres and each bar is the bond 
between a couple of considered particles. The network 
can be studied as an elastic lattice, where the bars are 
assigned elastic rigidities in connection with the size of 
the particles and the joints. The effect of internal loads 
(i.e. the sintering stress) can be studied by imposing 
appropriate thermal constraints to the system. For  
example, a uniform sintering stress, Z, is equivalent to 
a uniform negative change of temperature. If the por- 
ous compact is under the action of an external load, 
the situation is simulated by application of point for- 
ces to the boundary knots. It is quite evident that, in 
general, both the internal and the external loads can 
give rise to normal and shear forces, bending moments 
and torques in the bars. The amount  of such actions, 
exerted on a given joint interface, i.e. a given bar of the 
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Figure 6 (a) Two-dimensional close-packed sphere aggregate, and 
(b) its network representation. 

tttttttt o 
(a) 

(b) 

Figure 7 (a) Two-dimensional model of high-porosity sphere ag- 
gregate, and (b) its network representation. 

lattice, depends in a complicated way on the geometry 
of the system and could be evaluated by the aid of 
numerical analysis. For the present purpose a few 
general remarks will be sufficient. 

If the particles are uniform in size and closely 
packed (Fig. 6a and b) the dominant action is normal 
force, while bending moments are negligible [20]. 
Such a situation is typical of high-density porous 
systems. In the case we are dealing with, i.e. that of 
a high-porosity system, the network is largely defec- 
tive (Fig. 7a and b). In this network the effect of 
bending moments becomes important. We shall see 
how these bending moments can be responsible for 
particle rearrangement, and how this mechanism ex- 
plains a creep exponent less than unity. 

Experimental evidence proves that densification 
and creep start simultaneously. This means that the 
green compact is a system of mechanically interlocked 
particles where no rearrangement of the grains is pos- 
sible under the action of weak applied forces. The 
contacts between particles will be assumed to be elas- 
tic with stresses of the Hertzian-type applied to finite 
contact regions. At the sintering temperature, neck 
formation starts from these regions which grow into 
grain-boundary interfaces. The state of stress also in- 
cludes in such case the sintering stress, Z, which was 
shown elsewhere to be a true stress [19]. Now the 
lattice model holds. In the absence of bending mo- 
ment, the true compressive stress acting on a joint 
interface is substantially uniform and equal to 

= N / A  + Y, (4) 
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where A is the joint cross-sectional area. The effect of 
a bending moment M acting on the joint is to generate 
a stress gradient. A linear Navier-Bernoulli stress dis- 
tribution [21] 

N M 
= + y, + 5 -  (5) 

can be assumed, where x is the distance from the 
centroid of the joint in the direction of the gradient, 
A is the cross-sectional area and J the second moment 
of area of the joint. 

Both N and M are proportional to the nominal 
applied stress, cy0; in particular, we can write 

N = *(G)d? 20-o~r 2 (6) 

where r0 is the mean particle radius, qJ(G) is a factor 
related to the system geometry, and (~2(9) is a stress 
concentration factor accounting for the presence of 
voids [5] ,a  function of the actual relative density. The 
bending moment can be related to the normal force by 

M = z ( G ) N r o  = z(G)~(G)+2CyoZtr~ (7) 

where, besides the known symbols, z(G) is another 
geometrical factor related to the shape and the degree 
of connection of the elastic network, equal to zero in 
the case corresponding to a closed-packed particle 
arrangement, and of the order of unity for a highly 
defective bar network (corresponding to a high-poros- 
ity compact). As an example, for the simple two- 
dimensional, one-degree-of-freedom network of Fig. 8, 
one would easily calculate 

1 
- ( 8 a )  

qJ(G) 2 c o s s  

3 
)~(G) = g tg s (8b) 

where s is the angle describing the shape of the system. 
The ratio between the maximum bending stress and 

the compressive stress produced by the normal force, 
N, alone in Equation 5 turns out to be x(G)aro/r~ 

where a is the mean cross-sectional neck radius and r~ 
the gyratory radius being a fraction ofa. The ratio can 
be considerably larger than unity in the early stage of 
sintering, when ro>>a: this means that a region of the 
neck can be submitted to a tensile stress or, at least, to 
a compressive stress which is far lower than Z. 

,I, ,L ,I, ,1, ,1, 

1'1'1'1'1' 
(b) 
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O~ 
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Figure 8 (a) Two-dimensional model of one-degree-of-freedom 
high-porosity aggregate, (b)its network representation, and 
(c) unit element of (b). 
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The stress gradient associated with the distribution 
of Equation 5 will engender a gradient of chemical 
potential at the joint interface, given by [19] 

0g &~ Mf~o 

rcr3 
- ( 9 )  

J 

where f~0 is the atomic volume and ~(G) = qt(G) z(G) 
and the free-stress chemical potential has been as- 
sumed to be constant on the neck cross-section. 

This gradient will produce a diffusional net matter 
flow in the stressed domain of the joint from the more 
compressed toward the less compressed region. Thus 
the two particles undergo a deformation concentrated 
in the region of the neck which, if allowed by the 
system geometry, results in a reciprocal tilt or sliding, 
depending on the dominant diffusion mechanism 
(Fig. 9). If the shape of the particle is at least approx- 
imately conserved, as it is the case during an early 
stage of sintering, the kinematics of the two-particle 
system can be described just in terms of an angle s, 
formed by the lines joining the two centres before and 
after the movement (Fig. 9a). The local movements in 
a system containing large voids will give rise to a glo- 
bal rearrangement of the particle network. In this 
global movement the total volume should remain sub- 
stantially unchanged, while large shape changes can 
take place. Following this picture of the creep phe- 
nomenon in a highly porous material, it will be pos- 
sible to establish a relation between the global creep 
strain and the local kinematic parameter, s, namely 

ec = f ( s ,  G) (10) 

where G recalls a general geometry dependence. In the 
particular case of the four-particle model illustrated in 
Fig. 8c, this function becomes 

4 sin (So - s) 
~c (11) 

3 sin 2So 

where So is the initial (green) value of s, which ex- 
presses the geometry dependence in this special in- 
stance. 

M M 

(a) (b) 

Figure 9 (a) Mechanism of grain-boundary disconnection and two- 
particle tilting; (b) geometrical model. 



The model dependence of the creep strain is cert- 
ainly a weak point of any analytical model trying to 
describe the kinetic part of the process. An under- 
standing of the physics of the creep phenomenon, in 
particular the meaning of the creep exponent, is pos- 
sible, as we shall prove below, by treating only local 
variables which are independent of the global geomet- 
rical model. 

If the diffusion mechanism is such to produce a local 
axial strain rate, g, proportional to the corresponding 
local effective stress, cy(x), as suggested elsewhere [5, 
19] for bulk diffusion, we shall have, for the points of 
the joint interface 

~(x) ~a 
o(x) z 

(12) 

where ca and Z are respectively the densification strain 
rate and the sintering stress at the centroid of the 
interface (x = 0), where the effect of the bending mo- 
ment, M, is not felt. As the densification rate appeared 
from experiment to be load independent, the local ~a 
can be assumed to coincide with the macroscopic 
densification strain rate. Furthermore, the gradient of 

represents the rate of bending curvature of the neck 
cross-section and must be compatible with the rate of 
tilt, d~, through a simple relation of the type 

26 0~ 
dn - 0x (13) 

where d, is an average depth of the neck region where 
the bulk diffusion phenomena take place. 

From Equations 12 and 13, taking into account 
Equation 9, one obtains 

26 c3cy +a 

dn - 8x Z 

~(G)~ 2 CyorCro 3 &a 
= j ~- (14) 

Eliminating d~ through Equation 10, the ratio of the 
creep rate to the densification rate can be calculated as 

- @c%rcr~ G)~(O) (15) 
/;d 2EJ 

wheref~ (~, G) is the partial derivative o f f  with respect 
to ~. 

Among the variables on the right-hand side of 
Equation 15, only the moment of area of the neck 
cross-section is dependent on the applied stress, %.  
Because we are dealing only with the relationship 
between gc and %,  this relationship must be ex- 
pressed. 

As illustrated in Fig. 10 the effect of the stress 
distribution on the growth of the neck cross-section is 
such that the initial contact circle of radius ao can 
expand freely in three directions, but remains practic- 
ally the same in the region where the applied stress is 
considerably lower than E. Accordingly, a reasonable 
figure for J is 

J - -  r c  a~ae-p/4 (16) 

l~ aO ~L 8 

F T 
- - - 4  

V 
X 

a(x) 

Figure 10 Model of neck growth under non-uniform stress. 

where p is an exponent equal to zero in the case of 
isotropic growth, i.e. in the absence of bending mo- 
ment, and ranging between 1 and 2 in the other cases. 
The value of p is expected to be the higher, the larger is 
the stress gradient on the neck cross-section, i.e. the 
larger is the effect of bending. 

The value of ao can be calculated from the Hertzian 
elastic theory [22] which, for a pair of equal spheres of 
radius r0, gives 

a o = ( ~  Nr~~ 1/3 (17) 
E'/ 

where E' = E/(1 - v2), E being the elastic modulus of 
the material and v the Poisson's ratio. The radius a, 
which results from free sintering, is independent of 
the applied stress, being a function of the actual 
density, p. 

After eliminating N via Equation 6, Equations 17 
and 16 can be substituted in Equation 15, which takes 
the final form 

~c = ga dn (cYo~ t-p/3 E' 
ro \ U  I 2 F(O,~o,G) (18) 

where F is a function now including the kinetic part of 
the process and the geometry dependence. 

5. Discussion 
The model described in the foregoing section provides 
a relation (Equation 18) between the creep strain rate 
and the densification rate, which depends on a func- 
tion, F, of the actual microstructure and geometry. 
Unfortunately, a knowledge of such a function is diffi- 
cult to obtain either from theory or from experiment. 
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Therefore, the physico-mathematical model allows, 
for the present, no prediction of the kinetic law of 
creep. 

Nevertheless, Equation 18 can be used to explore 
the effect of the applied stress on the creep rate. Gener- 
ally speaking this dependence, expressed by the value 
of exponent n in Equation 1, could be regarded as 
a function of microstructure as well as green density. 
For the samples we are dealing with, the microstruc- 
ture appears to be determined only by the actual 
density [9]. In this framework, the physico-mathemat- 
ical model allows us to estabish whether in the early 
stage of sintering the green density or the actual den- 
sity is the more relevant parameter to the value of n. In 
fact, from Equation 18 the creep exponent is 

n = 1 - p / 3  (19) 

where p is a parameter accounting for the anisotropic 
neck growth due to the action of load-induced bend- 
ing moments. 

When the model is applied to low-porosity com- 
pacts, the effect of bending in the bars of the elastic 
lattice is negligible (Fig. 6). Under such conditions the 
model predicts p = 0 and n = 1. The prediction is 
consistent with experiments of Rahaman e t  aI .  [3, 6] 
on high-density compacts of ceramic oxides. 

In high-porosity compacts, the effect of bending 
causes p to assume a value between 1 and 2, with an 
average of 1.5, corresponding to n ~ 0.5. This con- 
clusion compares with the experimental results re- 
ported in the present paper, which give n = 0.44 
+ 0.03. 

In the early stage of sintering, the compact porosity 
is determined essentially by the green porosity: high- 
(low-)porosity green samples give high-(low-)porosity 
sintered compacts. Thus as far as the above model is 
applied to an early stage of sintering, it will be suffi- 
cient to study the meaning of p in connection with its 
green-density dependence. 

Samples with higher green density (about 0.44), 
treated for the same degree of densification as before, 
exhibit (Fig. 11) values of n in the range 0.7 1.0, 
corresponding to p in the range 1.0 0. This means that 
mechanisms of particle disconnection and rearrange- 
ment are the less important, the higher is the green 
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density. This conclusion, which is quite sound, is also 
supported by SEM observations. In Fig. 4b, the 
microstructure of MgO after firing exhibits a lower 
number of particle disconnections than visible in 
Fig. 4a, which illustrates a more porous compact. 

Another point, not yet investigated experimentally 
but clearly implied by Equation 18, is the dependence 
of the creep rate on the elastic modulus of the material 
when the creep exponent is less than unity. This de- 
pendence totally disappears if n -- 1. 

As a concluding remark on the local nature of the 
creep phenomena under inquiry, one should recall 
some conclusions from previous work [5,9]. As far as 
the temperature dependence is concerned, densifica- 
tion and creep exhibit an equal total apparent activa- 
tion enthalpy, which suggests a common mechanism 
of matter transport. For the microstructural depend- 
ence, the ratio of densification and creep rate is inde- 
pendent of actual density for high-density compacts, 
but is an increasing function of 9 in the case of high- 
porosity compacts. Following Equation 18, the kinetic 
function, F, should then be different in the two cases 
and, in particular, it should become insensitive to 
microstructure in the case of high-density samples. 
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